[1] Hunt, G.C.: Sequential arrays of waiting lines. Oper. Res. 4(6), 674–683 (1956)
[2] Gomez-Corral, A.: A tandem queue with blocking andMarkovian arrival process. Queueing Syst. 41,343–370 (2002)
[3] Gomez-Corral, A.: A matrix-geometric approximation for tandem queues with blocking and repeated attempts. Oper. Res. Lett. 30, 360–374 (2002)
[4] Hall, R.W., Daganzo, C.F.: Tandem tollbooths for the Golden Gate Bridge. Trans. Res. Rec. 905, 7–14(1983)
[5] Hong,Y.C., Kim, D.K., Kho, S.Y., Kim, S.W., Yang, H.: Modeling and simulation of tandem tollbooth operations with max-algebra approach. In: Proceedings of the first international conference on future generation information technology, pp. 138–150. Springer, Berlin (2009)
[6] He, Q.-M., Chao, X.: A tollbooth tandem queue with heterogeneous servers. Eur. J. Oper. Res. 236,177–189 (2014)
[7] Latouche, G., Neuts, M.F.: Efficient algorithmic solutions to exponential tandem queueswith blocking. SIAM J. Algebraic Discret. Methods 1, 93–106 (1980)
[8] Kim, C.S., Park, S.H., Dudin, A., Klimenok, V., Tsarenkov, G.: Investigation of the BMAP/G/1-./PH/1/M tandem queue with feedback and losses. Appl. Math. Mod. 34, 2926–2940 (2010a)
[9] Kim, C.S., Klimenok, V., Taramin, O.: A tandem retrial queueing system with two Markovian flows and reservation of channels. Comput. Oper. Res. 37, 1238–1246 (2010b)
[10] Klimenok, V., Breuer, L., Tsarenkov, G., Dudin, A.: The BMAP/G/1-./PH/1/M tandem queue with losses. Perform. Eval. 61, 17–40 (2005)
[11] Lian, Z., Zhao, N.: Departure processes and busy periods of a tandem network. Oper. Res. Int. J. 11,245–257 (2010)
[12] Van Houdt, B., Alfa, A.S.: The response time in a discrete-time tandem queue with blocking, Markovian arrivals and phase-type services. Oper. Res. Lett. 33, 373–381 (2005)
[13] Falin, G.I.: On a tandem queue with retrials and losses. Oper. Res. Int. J. 13, 415–427 (2013)
[14] Moutzoukis, E., Langaris, C.: Two queues in a tandem with retrial customers. Probab. Eng. Inf. Sci.15, 311–325 (2001)
[15] Phung-Duc, T.: An explicit solution for a tandem queue with retrial and losses. Oper. Res. Int. J. 12,189–207 (2012)
[16] Taramin, O.: A tandem queue with twoMarkovian inputs and retrial customers. Comput.Model. New Technol. 13, 38–47 (2009)
[17] Avrachenkov, K., Yechiali, U.: On tandem blocking queues with a common retrial queue. Comput.Oper. Res. 37, 1174–1180 (2010)123 |