[1] Glowinski, R., Marroco, A.: Sur läpproximation, par éléments finis dördre un, et la résolution, par pénalisation-dualité düne classe de problèmes de dirichlet non linéaires. Rev. Franc. Däutom., Inf., Rech. Opér. 9(R-2), 41-76 (1975) [2] Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40 (1976) [3] Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15(C), 299-331 (1983) [4] Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1-3), 293-318 (1992) [5] Chen, L., Sun, D., Toh, K.: A note on the convergence of ADMM for linearly constrained convex optimization problems. Comput. Optim. Appl. 66, 327-343 (2017) [6] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122 (2010) [7] Eckstein, J., Wang, Y.: Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives. Pac. J. Optim. 11(4), 619-644 (2015) [8] Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. Comput. Methods Appl. Sci. 34, 59-82 (2014) [9] Han, D.: A survey on some recent developments of alternating direction method of multipliers. J. Oper. Res. Soc. China (2022). https://doi.org/10.1007/s40305-021-00368-3 [10] Forero, P., Cano, A., Giannakis, G.B.: Consensus-based distributed support vector machines. J. Mach. Learn. Res. 11, 1663-1707 (2010) [11] Figueiredo, M.A.T., Bioucas-Dias, J.M.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19(12), 3133-3145 (2010) [12] Ng, M., Weiss, P., Yuan, X.: Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM J. Sci. Comput. 32(5), 2710-2736 (2010). https://doi.org/10.1137/090774823 [13] He, B., Xu, M., Yuan, X.: Solving large-scale least squares covariance matrix problems by alternating direction methods. SIAM J. Matrix Anal. Appl. 32(1), 136-152 (2011) [14] Ng, M., Wang, F., Yuan, X.: Inexact alternating direction methods for image recovery. SIAM J. Sci. Comput. 33(4), 1643-1668 (2011). https://doi.org/10.1137/100807697 [15] Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA CAM Rep. 9, 31 (2009) [16] Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20-46 (2011). https://doi.org/10.1007/s10915-010-9408-8 [17] Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015-1046 (2010) [18] Chen, C., Chan, R., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imag. Sci. 8(4), 2239-2267 (2015) [19] Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imag. Sci. 8(1), 644-681 (2015). https://doi.org/10.1137/14095697X [20] Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Progr. 155(1-2), 57-79 (2016) [21] Bot, R., Csetnek, E.: An inertial alternating direction method of multipliers. Minim. Theory Appl. 1(2), 29-49 (2016) [22] Han, D., Yuan, X.: Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51(6), 3446-3457 (2013) [23] Yang, W., Han, D.: Linear convergence of alternating direction method of multipliers for a class of convex optimization problems. SIAM J. Numer. Anal. 54(2), 625-640 (2016) [24] Han, D., Sun, D., Zhang, L.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622-637 (2018) [25] Liu, Y., Yuan, X., Zeng, S., Zhang, J.: Partial error bound conditions and the linear convergence rate of the alternating direction method of multipliers. SIAM J. Numer. Anal. 56(4), 2095-2123 (2018) [26] Yuan, X.: Alternating direction method for covariance selection models. J. Sci. Comput. 51(2), 261-273 (2012) [27] Fang, E., He, B., Liu, H., Yuan, X.: Generalized alternating direction method of multipliers: new theoretical insights and applications. Math. Progr. Comput. 7(2), 149-187 (2015) [28] Xu, Z., Taylor, G., Li, H., Figueiredo, M.A., Yuan, X.M., Goldstein, T.: Adaptive consensus ADMM for distributed optimization. PMLR 70, 3841-3850 (2017) [29] Chan, R., Yang, J., Yuan, X.: Alternating direction method for image inpainting in wavelet domains. SIAM J. Imag. Sci. 4(4), 807-826 (2011) [30] Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288-297 (2010) [31] Li, X., Pong, T., Sun, H., Wolkowicz, H.: A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem. Comput. Optim. Appl. 78(3), 853-891 (2021). https://doi.org/10.1007/s10589-020-00261-4 [32] Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227-238 (2012) [33] Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421-439 (1956) [34] Martinet, B.: Régularisation inéquations variationnelles par approximations successives. Rev. Franc. Däutom., Inf., Rech. Opér. 4, 154-159 (1970) [35] Rockafellar, R.T.: Monotone operatores and proximal point algorithm. SIAM J. Control. Optim. 14, 877-898 (1976) [36] Eckstein, J.: Parallel alternating direction multiplier decomposition of convex programs. J. Optim. Theory Appl. 80, 39-62 (1994) [37] Rockafellar, R.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970) |