Journal of the Operations Research Society of China ›› 2022, Vol. 10 ›› Issue (1): 1-52.doi: 10.1007/s40305-021-00368-3
• • 下一篇
收稿日期:
2020-02-01
修回日期:
2021-09-08
出版日期:
2022-03-30
发布日期:
2022-03-23
基金资助:
De-Ren Han
Received:
2020-02-01
Revised:
2021-09-08
Online:
2022-03-30
Published:
2022-03-23
Contact:
De-Ren Han
E-mail:handr@buaa.edu.cn
中图分类号:
. [J]. Journal of the Operations Research Society of China, 2022, 10(1): 1-52.
De-Ren Han. A Survey on Some Recent Developments of Alternating Direction Method of Multipliers[J]. Journal of the Operations Research Society of China, 2022, 10(1): 1-52.
[1] Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.:RASL:robust alignment by sparse and lowrank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233-2246(2012) [2] Tao, M., Yuan, X.:Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57-81(2011) [3] Chandrasekaran,V., Parrilo, P.A.,Willsky, A.S.:Latent variable graphical model selection via convex optimization. Ann. Stat. 40(4), 1935-1967(2012) [4] McLachlan, G.:Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley (2004) [5] Li, M., Sun, D., Toh, K.-C.:A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pac. J. Oper. Res. 32(04), 1550024(2015) [6] Tibshirani, R.:Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.:Ser. B (Methodol.) 58(1), 267-288(1996) [7] Rudin, L.I., Osher, S., Fatemi, E.:Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259-268(1992) [8] Bruckstein, A.M., Donoho, D.L., Elad, M.:From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34-81(2009) [9] Huber, P.J.:Robust Statistics. Springer (2011) [10] Yuan,M., Lin, Y.:Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc.:Ser. B (Stat. Methodol.) 68(1), 49-67(2006) [11] Candès, E.J., Recht, B.:Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717-772(2009) [12] Candès, E.J., Li, X., Ma, Y., Wright, J.:Robust principal component analysis? J. ACM (JACM) 58(3), 1-37(2011) [13] Donoho, D.L.:De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613-627(1995) [14] Donoho, D.L.:High-dimensional data analysis:the curses and blessings of dimensionality. AMS Math. Chall. Lect. 1-32, 375(2000) [15] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122(2011) [16] Glowinski, R.:On alternating directionmethods of multipliers:a historical perspective. In:Modeling, Simulation and Optimization for Science and Technology, pp. 59-82. Springer (2014) [17] Glowinski, R., Marroco, A.:Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires", Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique 9(R2), 41-76(1975) [18] Gabay, D., Mercier, B.:A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40(1976) [19] Gabay, D.:Applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299-331(1983) [20] Eckstein, J., Yao, W.:Understanding the convergence of the alternating direction method of multipliers:theoretical and computational perspectives. Pac. J. Optim. 11(4), 619-644(2015) [21] Chen, C., He, B., Ye, Y., Yuan, X.:The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1-2), 57-79(2016) [22] Kurdyka, K.:On gradients of functions definable in o-minimal structures. Annales de l'institut Fourier 48, 769-783(1998) [23] Lojasiewicz, S.:Une propri ét é topologique des sous-ensembles analytiques r éels, les É quations auxdérivées partielles. Les Éditions aux Dérivées Partielles 117, 87-89(1963) [24] Hestenes, M.R.:Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303-320(1969) [25] Powell, M.J.:A method for nonlinear constraints in minimization problems. In:Fletcher, R. (ed.) Optimization, pp. 283-298. Academic Press (1969) [26] Hong, M., Luo, Z.-Q.:On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1-2), 165-199(2017) [27] Bertsekas, D.P., Nedi, A., Ozdaglar, A.E.:Convex Analysis and Optimization. Athena Scientific (2003) [28] Rockafellar, R.T.:Convex Analysis. Princeton University Press (2015) [29] Zhang, J.,Ge, S., Chang, T.-H., Luo, Z.-Q.:Decentralized non-convex learning with linearly coupled constraints. arXiv:2103.05378(2021) [30] Eckstein, J., Bertsekas, D.P.:On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1-3), 293-318(1992) [31] Ryu, E.K., Boyd, S.:Primer on monotone operator methods. Appl. Comput. Math. 15(1), 3-43(2016) [32] Douglas, J., Rachford, H.:On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421-439(1956) [33] Rockafellar, R.T.:Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877-898(1976) [34] Rockafellar,R.:Monotone operators and augmented Lagrangian methods in nonlinear programming. In:Nonlinear Programming 3, pp. 1-25. Elsevier (1978) [35] He, B., Yang, H.:Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3-5), 151-161(1998) [36] Kontogiorgis, S., Meyer, R.R.:A variable-penalty alternating directions method for convex optimization. Math. Program. 83(1-3), 29-53(1998) [37] He, B., Yang, H., Wang, S.:Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337-356(2000) [38] He, B., Liao, L.-Z., Han, D., Yang, H.:A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92(1), 103-118(2002) [39] Chan, R., Tao, M., Yuan, X.:Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imag. Sci. 6(1), 680-697(2013) [40] Han, D., He, H., Yang, H., Yuan, X.:A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127(1), 167-200(2014) [41] Rockafellar, R.T.:Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97-116(1976) [42] Eckstein, J., Fukushima, M.:Some reformulations and applications of the alternating direction method of multipliers. In:Large Scale Optimization, pp. 115-134. Springer (1994) [43] Facchinei, F., Pang, J.S.:Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Science & Business Media, Berlin (2003) [44] Lin, Z., Liu, R., Su, Z.:Linearized alternating direction method with adaptive penalty for low-rank representation. In:Advances in Neural Information Processing Systems, pp. 612-620(2011) [45] Xu,M.,Wu, T.:A class of linearized proximal alternating directionmethods. J. Optim. Theory Appl. 151(2), 321-337(2011) [46] Yang, J., Yuan, X.:Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301-329(2013) [47] Wang, X., Yuan, X.:The linearized alternating direction method of multipliers for Dantzig selector. SIAM J. Sci. Comput. 34(5), A2792-A2811(2012) [48] Chen, G.,Teboulle, M.:Aproximal-based decompositionmethod for convexminimization problems. Math. Program. 64(1-3), 81-101(1994) [49] Shefi, R., Teboulle, M.:Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269-297(2014) [50] Han, D., He, B.:A new accuracy criterion for approximate proximal point algorithms. J.Math. Anal. Appl. 263(2), 343-354(2001) [51] Solodov, M.V., Svaiter, B.F.:A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59-70(1999) [52] Solodov, M.V., Svaiter, B.F.:A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323-345(1999) [53] Han, D.:A new hybrid generalized proximal point algorithm for variational inequality problems. J. Global Optim. 26(2), 125-140(2003) [54] He, B., Yang, Z., Yuan, X.:An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300(2), 362-374(2004) [55] Eckstein, J., Silva, P.J.:A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1-2), 319-348(2013) [56] Eckstein, J., Yao,W.:Approximate ADMM algorithms derived from Lagrangian splitting. Comput. Optim. Appl. 68(2), 363-405(2017) [57] Eckstein, J.,Yao,W.:Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Math. Program. 170(2), 417-444(2018) [58] Xie, J.:On inexactADMMswith relative error criteria. Comput.Optim.Appl. 71(3), 743-765(2018) [59] Nesterov, Y.:Introductory Lectures on Convex Optimization:A Basic Course, vol. 87. Springer Science & Business Media, Berlin (2013) [60] He, B., Yuan, X.:On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700-709(2012) [61] Monteiro, R.D., Svaiter, B.F.:Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475-507(2013) [62] Cai, X., Han, D.:O(1/t) complexity analysis of the generalized alternating direction method of multipliers. Sci. China Math. 62(4), 795-808(2019) [63] Ouyang,Y.,Chen,Y., Lan, G., Pasiliao, E., Jr.:An accelerated linearized alternating directionmethod of multipliers. SIAM J. Imag. Sci. 8(1), 644-681(2015) [64] He, B., Yuan, X.:On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567-577(2015) [65] Deng, W., Yin, W.:On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889-916(2016) [66] Gao, X., Jiang, B., Zhang, S.:On the information-adaptive variants of the ADMM:an iteration complexity perspective. J. Sci. Comput. 76(1), 327-363(2018) [67] Gonçalves,M.L., Melo, J.G., Monteiro, R.D.:Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework. SIAM J. Optim. 27(1), 379-407(2017) [68] Lions, P.-L., Mercier, B.:Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964-979(1979) [69] Luque, F.J.:Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control. Optim. 22(2), 277-293(1984) [70] Eckstein, J.:Splitting Methods for Monotone Operators with Applications to Parallel Optimization.PhD thesis, Massachusetts Institute of Technology (1989) [71] Boley, D.:Local linear convergence of ADMM on quadratic or linear programs. SIAM J. Optim. 23(4), 2183-2207(2013) [72] Han, D., Yuan, X.:Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51(6), 3446-3457(2013) [73] Luo, Z.-Q., Tseng, P.:Error bounds and convergence analysis of feasible descent methods:a general approach. Ann. Oper. Res. 46(1), 157-178(1993) [74] Zhu, T., Yu, Z.:A simple proof for some important properties of the projection mapping. Math. Inequal. Appl. 7, 453-456(2004) [75] Yang, W.H., Han, D.:Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM J. Numer. Anal. 54(2), 625-640(2016) [76] Zheng, X.Y., Ng, K.F.:Metric subregularity of piecewise linear multifunctions and applications to piecewise linear multiobjective optimization. SIAM J. Optim. 24(1), 154-174(2014) [77] Sun, J.:On monotropic piecewise quadratic programming (network, algorithm, convex programming, decomposition method) Ph.D. Dissertation. University of Washington, USA. Order Number:AAI8706680(1986) [78] Rockafellar, R.T.,Wets, R.J.-B.:Variational Analysis, vol. 317. Springer Science&BusinessMedia, Berlin (2009) [79] Han, D., Sun, D., Zhang, L.:Linear rate convergence of the alternating directionmethod of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622-637(2017) [80] Dontchev, A.L., Rockafellar, R.T.:Implicit Functions and Solution Mappings, vol. 543. Springer (2009) [81] Chang, T.-H., Hong, M., Wang, X.:Multi-agent distributed optimization via inexact consensus ADMM. IEEE Trans. Signal Process. 63(2), 482-497(2014) [82] Shi,W.,Ling, Q.,Yuan, K.,Wu, G.,Yin,W.:On the linear convergence of theADMMin decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750-1761(2014) [83] Han, D., Yuan, X.:A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227-238(2012) [84] Chen, C., Shen, Y., You, Y.:On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstr. Appl. Anal. 2013,(2013) [85] Lin, T., Ma, S., Zhang, S.:On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3(3), 251-274(2015) [86] Cai, X., Han, D., Yuan, X.:On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39-73(2017) [87] Lin, T.,Ma, S., Zhang, S.:On the global linear convergence of theADMMwith multiblock variables. SIAM J. Optim. 25(3), 1478-1497(2015) [88] Bauschke, H.H., Combettes, P.L.:Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer (2011) [89] He,B., Tao, M.,Yuan, X.:Alternating directionmethod with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313-340(2012) [90] Ye,C.,Yuan, X.:Adescentmethod for structuredmonotone variational inequalities.Optim.Methods Softw. 22(2), 329-338(2007) [91] Han, D., Yuan, X., Zhang, W., Cai, X.:An ADM-based splitting method for separable convex programming. Comput. Optim. Appl. 54(2), 343-369(2013) [92] Han, D.,Yuan, X., Zhang,W.:An augmented Lagrangian based parallel splittingmethod for separable convex minimization with applications to image processing. Math. Comput. 83(289), 2263-2291(2014) [93] He, B.:Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42(2), 195-212(2009) [94] Wang, K., Han, D., Xu, L.:A parallel splitting method for separable convex programs. J. Optim. Theory Appl. 159(1), 138-158(2013) [95] He, B., Hou, L., Yuan, X.:On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274-2312(2015) [96] Deng, W., Lai, M.-J., Peng, Z., Yin, W.:Parallel multi-block ADMM with o(1/k) convergence. J. Sci. Comput. 71(2), 712-736(2017) [97] He, H., Han, D.:A distributed Douglas-Rachford splitting method for multi-block convex minimization problems. Adv. Comput. Math. 42(1), 27-53(2016) [98] Cao, C., Han, D., Xu, L.:A new partial splitting augmented Lagrangian method for minimizing the sum of three convex functions. Appl. Math. Comput. 219(10), 5449-5457(2013) [99] Hou, L., He, H., Yang, J.:A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA. Comput. Optim. Appl. 63(1), 273-303(2016) [100] Han, D., Kong,W., Zhang,W.:A partial splitting augmented Lagrangian method for low patch-rank image decomposition. J. Math. Imag. Vis. 51(1), 145-160(2015) [101] Attouch, H., Bolte, J., Redont, P., Soubeyran, A.:Proximal alternating minimization and projection methods for nonconvex problems:an approach based on the Kurdyka-Lojasiewicz inequality.Math. Oper. Res. 35(2), 438-457(2010) [102] Attouch, H., Bolte, J., Svaiter, B.F.:Convergence of descent methods for semi-algebraic and tame problems:proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1-2), 91-129(2013) [103] Bolte, J., Daniilidis, A., Lewis, A.:The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205-1223(2007) [104] Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.:Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556-572(2007) [105] Mordukhovich, B.S.:Variational Analysis and Generalized Differentiation I:Basic Theory, vol. 330. Springer Science & Business Media, Berlin (2006) [106] Absil, P.-A., Mahony, R., Andrews, B.:Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531-547(2005) [107] Attouch, H., Bolte, J.:On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1-2), 5-16(2009) [108] Bolte, J.,Daniilidis, A., Ley, O., Mazet, L.:Characterizations of Lojasiewicz inequalities:subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319-3363(2010) [109] Merlet, B., Pierre,M.:Convergence to equilibrium for the backward Euler scheme and applications. Commun. Pure Appl. Anal. 9(3), 685-702(2010) [110] Noll, D.:Convergence of non-smooth descent methods using the Kurdyka-Lojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553-572(2014) [111] Chouzenoux, E., Pesquet, J.-C., Repetti, A.:Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107-132(2014) [112] Frankel, P., Garrigos, G., Peypouquet, J.:Splitting methods with variable metric for Kurdyka-Lojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165(3), 874-900(2015) [113] Li, G., Pong, T.K.:Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434-2460(2015) [114] Wang, F., Xu, Z., Xu, H.-K.:Convergence of bregman alternating direction method with multipliers for nonconvex composite problems. arXiv:1410.8625(2014) [115] Guo, K., Han, D., Wu, T.:Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. 94(8), 1653-1669(2017) [116] Bolte, J., Sabach, S., Teboulle, M.:Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1-2), 459-494(2014) [117] Wang, Y., Yin,W., Zeng, J.:Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29-63(2019) [118] Jia, Z., Gao, X., Cai, X., Han, D.:Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. J. Optim. Theory Appl. 188, 1-25(2021) [119] Jiang, B., Lin, T., Ma, S., Zhang, S.:Structured nonconvex and nonsmooth optimization:algorithms and iteration complexity analysis. Comput. Optim. Appl. 72(1), 115-157(2019) [120] Zhang, J., Luo, Z.-Q.:A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization. SIAM J. Optim. 30(3), 2272-2302(2020) [121] Guo, K., Han, D.,Wang, D.Z.,Wu, T.:Convergence ofADMMfor multi-block nonconvex separable optimization models. Front. Math. China 12(5), 1139-1162(2017) [122] Guo, K., Han, D., Wu, T.:Convergence of ADMM for optimization problems with nonseparable nonconvex objective and linear constraints. Pac. J. Optim. 14(3), 489-506(2018) [123] Hong, M., Luo, Z.-Q., Razaviyayn, M.:Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337-364(2016) [124] Bayram, I., Selesnick, I.W.:The Douglas-Rachford algorithm for weakly convex penalties. arXiv preprint arXiv:1511.03920(2015) [125] Guo, K., Han, D., Yuan, X.:Convergence analysis of Douglas-Rachford splitting method for ‘strongly + weakly’ convex programming. SIAM J. Numer. Anal. 55(4), 1549-1577(2017) [126] Guo, K., Han, D.:A note on the Douglas-Rachford splitting method for optimization problems involving hypoconvex functions. J. Glob. Optim. 72(3), 431-441(2018) [127] Bayram, I.:Penalty functions derived from monotone mappings. IEEE Signal Process. Lett. 22(3), 265-269(2014) [128] Chen, L., Gu, Y.:The convergence guarantees of a non-convex approach for sparse recovery. IEEE Trans. Signal Process. 62(15), 3754-3767(2014) [129] Selesnick, I.W., Bayram, I.:Sparse signal estimation by maximally sparse convex optimization. IEEE Trans. Signal Process. 62(5), 1078-1092(2014) [130] Guo, K., Yuan, X., Zeng, S.:Convergence analysis of ISTA and FISTA for ‘strongly + semi’ convex programming (2016) [131] Fan, J., Li, R.:Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348-1360(2001) [132] Zhang, C.-H.:Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894-942(2010) [133] Li, G., Pong, T.K.:Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program. 159(1-2), 371-401(2016) [134] Mollenhoff, T., Strekalovskiy, E.,Moeller,M., Cremers, D.:The primal-dual hybrid gradientmethod for semiconvex splittings. SIAM J. Imag. Sci. 8(2), 827-857(2015) [135] Goldstein, T., O'Donoghue, B., Setzer, S., Baraniuk, R.:Fast alternating direction optimization methods. SIAM J. Imag. Sci. 7(3), 1588-1623(2014) [136] Tian, W., Yuan, X.:An alternating direction method of multipliers with a worst-case O(1/n2) convergence rate. Math. Comput. 88(318), 1685-1713(2019) |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||