[1] Khan, A.A., Tammer, C., Zǎlinescu, C.:Set-Valued Optimization:An Introduction with Applications. Springer, New York (2015) [2] Miglierina, E., Molho, E.:Scalarization and stability in vector optimization. J. Optim. Theory Appl. 114, 657-670(2002) [3] Xiang, S.W., Yin, W.S.:Stability results for efficient solutions of vector optimization problems. J. Optim. Theory Appl. 134, 385-398(2007) [4] Kuroiwa, D., Tanaka, T., Ha, X.T.D.:On cone convexity of set-valued maps. Nonlinear Anal. 30, 1487-1496(1997) [5] Kuroiwa, D.:On set-valued optimization. Nonlinear Anal. 47, 1395-1400(2001) [6] Hernández, E., Rodríguez-Marín, L.:Existence theorems for set optimization problems. Nonlinear Anal. 67, 1726-1736(2007) [7] Kuroiwa, D.:Existence theorems for set optimization with set-valued maps. J. Inf. Optim. Sci. 24, 73-84(2003) [8] Alonso, M., Rodríguez-Marín, L.:Optimality and conditions for set-valued maps with set optimization. Nonlinear Anal. 70, 3057-3064(2009) [9] Araya, Y.:Four types of nonlinear scalarization and some application in set optimization. Nonlinear Anal. 75, 3821-3835(2012) [10] Hernández, E., Rodríguez-Marín, L.:Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134, 119-134(2007) [11] Löhne, A.:Optimization with set relations:conjugate duality. Optimization 54, 265-282(2005) [12] Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.:Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, o1822-1833(2012) [13] Zhang, W.Y., Li, S.J., Teo, K.L.:Well-posedness for set optimization problems. Nonlinear Anal. 71, 3769-3778(2009) [14] Long, X.J., Peng, J.W., Peng, Z.Y.:Scalarization and pointwise well-posedness for set optimization problems. J. Glob. Optim. 62, 763-773(2015) [15] Han, Y., Huang, N.J.:Well-posedness and stability of solutions for set optimization problems. Optimization 66, 17-33(2017) [16] Bednarczuk, E.M., Miglierina, E., Molho, E.:A mountain pass-type theorem for vector-valued functions. Set-Valued Anal. 19, 569-587(2011) [17] Ha, T.X.D.:Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124, 187-206(2005) [18] Xu, Y.D., Li, S.J.:Continuity of the solution set mappings to a parametric set optimization problem. Optim. Lett. 8, 2315-2327(2014) [19] Xu, Y.D., Zhang, P.P.:On the stability of the solution set mappings to parametric set optimization problems. J. Oper. Res. Soc. China. 4, 255-263(2016) [20] Xu, Y.D., Li, S.J.:On the solution continuity of parametric set optimization problems. Math. Methods Oper. Res. 84, 223-237(2016) [21] Jahn, J., Ha, T.X.D.:New order relations in set optimization. J. Optim. Theory Appl. 148, 209-236(2011) [22] Jahn, J.:Vectorization in set optimization. J. Optim. Theory Appl. 167, 783-795(2015) [23] Köbis, E., Köbis, M.A.:Treatment of set order relations by means of a nonlinear scalarization functional:a full characterization. Optimization 65, 1805-1827(2016) [24] Chen, J.W., Ansari, Q.H., Yao, J.-C.:Characterizations of set order relations and constrained set optimization problems via oriented distance function. Optimization 66, 1741-1754(2017) [25] Chen, C.R., Li, S.J., Teo, K.L.:Solution semicontinuity of parametric generalized vector equilibrium problems. J. Glob. Optim. 45, 309-318(2009) [26] Peng, Z.Y., Yang, X.M., Peng, J.W.:On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality. J. Optim. Theory Appl. 152, 256-264(2012) [27] Chen, B., Huang, N.J.:Continuity of the solution mapping to parametric generalized vector equilibrium problems. J. Glob. Optim. 56, 1515-1528(2013) [28] Peng, Z.Y., Zhao, Y., Yang, X.M.:Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems. Numer. Funct. Anal. Optim. 36, 481-500(2015) [29] Chen, C.R., Zuo, X., Lu, F., Li, S.J.:Vector equilibrium problems under improvement sets and linear scalarization with stability applications. Optim. Methods Softw. 31, 1240-1257(2016) [30] Aubin, J.P., Ekeland, I.:Applied Nonlinear Analysis. Wiley, New York (1984) [31] Ferro, F.:A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19-31(1989) [32] Jahn, J.:Vector Optimization:Theory, Applications, and Extensions, 2nd edn. Springer, Berlin (2011) [33] Anh,L.Q.,Khanh,P.Q.:Semicontinuityofthesolutionsetofparametricmultivaluedvectorquasiequilibrium problems. J. Math. Anal. Appl. 294, 699-711(2004) [34] Hiriart-Urruty, J.B.:Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79-97(1979) |